
Eur. Phys. J. D 41, 297–302 (2007)
DOI: 10.1140/epjd/e2006-00225-9 THE EUROPEAN

PHYSICAL JOURNAL D

Description of nonrigid rotation in small atomic clusters
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Abstract. The dependence of the internal dynamics of triatomic van der Waals clusters on the rate of
nonrigid rotation has been studied. The method of decomposition of the system’s motion into orthogonal
modes of the motion has been proposed. Additionally, a new method of separation of the kinetic energy,
captured by the modes, into rotational and vibrational components has been developed. It has been found
that the most significant factor for the chaotic behavior of the cluster is the partitioning of the vibrational
and rotational energies among the modes.

PACS. 36.40.-c Atomic and molecular clusters – 05.45.-a Nonlinear dynamics and chaos

1 Introduction

Atomic and molecular clusters, being intermediates be-
tween separate atoms and molecules on the one hand and
the condensed phase on the other hand, often demonstrate
properties which are distinctly different from those of ei-
ther gases or solids, or liquids. Investigation of these prop-
erties is of a great importance for establishing the relation
between the microworld of atoms and molecules and the
macroworld of condensed phase and for unravelling the
mechanisms governing the transitions between these two
worlds.

The difference between the internal dynamics of van
der Waals (vdW) clusters and that of molecules arises
from the different nature and strength of interaction be-
tween atoms in molecules and atoms in vdW clusters.
Atoms in molecules are trapped in their potential en-
ergy wells due to strong chemical interactions within
the molecules. High energy barriers exist between such
wells. Dynamics of the atomic motion in molecules can
be treated as weakly coupled small-amplitude vibrations
around the minima. To consider vibrations in molecules
one can usually use the normal-mode approximation. For
vdW clusters, the strength of interactions among the
atoms is weaker. There are numerous potential energy
wells, which have low depths and small barriers separat-
ing them. Dynamics in such wells can not be represented
as the set of uncoupled oscillations, and normal-mode ap-
proximation cannot be applied. Besides, the rotation in
vdW clusters is essentially non-rigid, and the interaction
between the rotational and vibrational motions is signifi-
cant. Consequently, the commonly used framework of near
rigid or “semirigid” systems, in which the rotational mo-
tion is executed in conjunction with oscillations, often of
small amplitude, is not valid. In spite of the objective dif-
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ficulties, the classical dynamics studies of the atomic clus-
ters, which have been undertaken during the last decades,
revealed an extremely important and intricate role of the
total angular momentum [1].

It has also been shown, that due to the nonlinearity
of interaction among the particles, the dynamics of vdW
clusters exhibits significant degree of chaos [2]. The extent
of chaos in the clusters is not uniquely defined by its to-
tal energy and angular momentum, but instead strongly
depends on the initial state of the cluster [1]. There are
several hypotheses about parameters, which control the
extent of chaos in clusters [3,4], but in general the problem
is not resolved yet. The aim of this paper is to investigate
the influence of rotation on the internal dynamics of vdW
clusters.

We will try to overcome the difficulties, mentioned
above, by using the method developed earlier by us, which
we call “method of effective modes of the motion”. These
method is similar to the method of bi-orthogonal decom-
position, described in [5], and the method of Karhunen-
Loève decomposition, described, for example, in [6,7].

The structure of this paper is as follows: Section 2.1
presents a basic description of the method of effective
modes of motion. In Sections 2.2 and 2.3 the method is
supplemented with the method of separation of the kinetic
energy, captured by the modes, into rotational and vibra-
tional components. In Section 3 the dynamics of triatomic
Ar3 clusters is described, and Section 4 gives the summary
of the work.

2 Methods

2.1 Method of effective modes of motion

The main idea of this method is to decompose the mo-
tion in n-dimensional phase space into m, (m = 1, 2...n),
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orthogonal components (modes of motion) with the ex-
tremal properties. Among all m-dimensional components
of the phase trajectory, the superposition of m modes ap-
proximates the dynamical properties in the most accurate
manner [8]. We observe the evolution of the system at the
discreet time moments t1, ...tNT ∈ [0, T ), using the numer-
ical integration of Hamilton equations of motion (NT is
the number of steps of integration). At any moment tj we
get a vector of the phase coordinates q(tj) = [x(tj), p(tj)],
where x(tj) is the position vector and p(tj) is the momen-
tum vector. Let us focus on the momentum subspace, in
which the trajectory is specified by the n × NT matrix,
that can be written in the form

p̂ = p̂ij = pi(tj), i = 1, n, j = 1, NT , (1)

where n is the number of degrees of freedom, NT � n.
Using singular value decomposition of the matrix (1), the
latter can be represented in the form

pj =
n∑

k=1

λk gj
k ek, (2)

where λk, λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0 are called singular
values, and the vector sets ek and gk are called singular
bases. The vectors ek gives the directions of the kth mode
of the motion, or, in more detail, directions and relative
amplitudes of the motion of the particles. The product
λk gj

k gives the projection of the momentum subspace p̂
on the kth mode, or the amplitude of the kth mode at any
moment t:

λk gj
k = (p(t), ek). (3)

The value η(k), defined as

η(k) =
λ2

k
n∑

k=1

λ2
k

, (4)

gives the weight of the kth mode in the new system of co-
ordinates. For the momentum subspace, the sum

∑n
k=1 λ2

k
represents twice the value of kinetic energy of the system,
and η(k) represents the time-averaged kinetic energy, con-
tained in the kth mode. The error of the approximation of
the motion with m modes (the error in the kinetic energy)
is given by γ, which is calculated from:

γ(m) =
n∑

k=m+1

λ2
k. (5)

It has been shown that for the many-particle systems,
whose inter-particle interaction obey to quadratic poten-
tial, the effective modes could be reduced to the normal
modes [9]. In contrast to the normal modes, the time de-
pendence of amplitudes of the effective modes can be in-
harmonic. Besides, it can be showed that the rotation of
the rigid body around one of the principal axis of iner-
tia could be represented by the two coupling modes with
equivalent energy and periodic sinusoidal energy trans-
fer between them [7]. In the general case rotation of the

rigid body can be represented with three pairs of coupling
modes with the properties described above. The value of
the kinetic energy, captured by each pair of modes, re-
mains constant during the simulation.

2.2 Method of separation of the kinetic energy
captured by the modes into rotational and vibrational
component

For nonrigid systems, the motion in each effective mode
consists of rotational and vibrational components. It is
possible to separate the energy of the overall rotation from
that of the vibrational motion, using the procedure sug-
gested in [10]. The advantage of this scheme is that it
is admissible for any N -body system irrespective of the
degree of nonrigidity. As it can be seen below, we have
adopted this framework for the separation of the kinetic
energy, stored in every single mode.

Let us consider the system of N particles, indexed
with i. At first, we need to know the value of the kinetic
energy captured by each mode at any instant moment t.
Multidimensional vector p is defined as 3N -vector, con-
sisting of 3N projections of momentums of all particles,
or as N vectors of momentum of each particle:

p =


 p1

...
pN


 . (6)

Using the method of effective modes of motion, for each
particle, the vector p is given as

pi =
3N∑
k=1

(p(t), ek)i · (ek)i, (7)

where (ek) is defined as follows:

(ek) =


 (ek)1

...
(ek)N


 . (8)

Since the basis (ek) is the orthonormal basis, at any t the
kinetic energy (Ekin)k, captured by the kth mode, can be
written as

(Ekin)k =
N∑

i=1

(p(t), ek)i
2

2mi
. (9)

The instantaneous energy of the overall rotation can be
defined as follows (see [10]):

Erot(t) =
1
2
(M · ω(t)), (10)

where M is the total angular momentum of the system,
and the instantaneous angular velocity ω(t) is:

ω(t) = I−1(t) · M, (11)

where I(t) is the instantaneous tensor of inertia. If the
system consists of N particles with masses mi, than this
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tensor can be expressed through the coordinates ri =
{xi, yi, zi} of the particles as 3 × 3 matrix with elements

Iαα(t) =
∑
i=1

(mi(r2
i (t) − α2

i (t))), (12)

Iαβ(t) = −
∑
i=1

(mi(αi(t)βi(t)); α, β(�= α) = x, y, z. (13)

Using equation (7), for the total angular momentum we
have an expression

M =
N∑

i=1

ri ×pi =
N∑

i=1

ri ×
(

N∑
k=1

(p(t), ek) · (ek)i

)
. (14)

Changing the sequence of summing in the formula (14),
we get an expression

M =
N∑

k=1

(p(t), ek) ·
(

N∑
i=1

ri × (ek)i

)
. (15)

Consequently, at any instant moment for the energy of the
overall rotation we have:

Erot =
1
2

N∑
k=1

[(
(p(t), ek)

3∑
i=1

ri(t)× (ek)i

)
· ω(t)

]
, (16)

and for the rotational energy captured by the kth mode
we have

(Erot)k =
1
2
(p(t), ek)

(
3∑

i=1

ri(t)× (ek)i

)
· ω(t). (17)

Besides, we can calculate the vibrational energy captured
by the kth mode as the rest part of the kinetic energy
captured by the kth mode:

(Evib)k = (Ekin)k − (Erot)k . (18)

2.3 Effective numbers of modes

Let us define the effective number of modes neff as

neff = 10
−∑

k

ak log ak

, (19)

where ak is the relative part of the time-averaged kinetic
(or rotational, or vibrational) energy, captured by the kth
mode. The effective numbers of modes represent the de-
gree of equipartition of the energies among the modes.
Each effective number can takes on a value from one (when
whole energy is in the one mode only) to six (when the
energy is equidistributed between all the modes).

Similar concept is used in the quantum-mechanical ap-
proach. Then the wave function of a system is expanded
using the wave functions of it’s stationary states, the de-
gree of equipartition among different basis functions is
used as the characteristic of the set of decomposition co-
efficients {a}. For the quantitative expression of the de-
gree of equipartition one can use such parameters as the

relationship of participation Pn =
∑

m |anm|4, the en-
tropy Sn = −∑ |anm|2 ln |am|2 and the effective number

of states n∗ = P−1
n or n∗ = exp Sn [11,12]. As it was found

in the most of theoretical studies [11], the more chaotic is
the system, the higher is the degree of equipartition.

Also we can use the effective numbers of modes to de-
rive the temperature (θ) of the clusters. If the equidistri-
bution of the kinetic energy between degrees of freedom
exists, then the internal temperature of cluster could be
defined as follows:

θ = 2〈Evib〉/ kBndf , (20)

where Evib is the time or ensemble average of the vibra-
tional energy, ndf is the number of the degrees of freedom
and kB is Boltzmann constant. In other cases we suggest
to use the effective number of modes instead of the number
of degrees of freedom in equation (20), as more reliable.

3 Dynamics of a triatomic cluster

The cluster consisting of three identical rare gas atoms
can be considered as a bound or long-lived, quasibound
state of the system defined by the Hamiltonian

H =
3∑

i=1

pi

2m
+

3∑
i=1

U(rij). (21)

Here, rij = |qi − qj | is the distance between two atoms,
qi and pi are the position and momentum vectors of the
ith atom, m is its mass, and U(rij) is the Lennard-Jones
potential

U(rij) = 4U0

[(
α

rij

)12

−
(

α

rij

)6
]

, (22)

where U0 is the diatomic well depth and α is its charac-
teristic width (at the zero level). Parameters m, U0 and
α are taken as dimensionless, with (mαU0)

1
2 as the unit

of time. The ground state of the cluster with the total en-
ergy E = −3 and zero angular momentum corresponds to
the structure with the atoms located at the vertices of an
equilateral triangle with side α′ = α 6

√
2. When the total

energy exceeds the value of Elin = −2.03, then the passage
though the linear saddle point is allowed. The dissociation
threshold for the triatomic cluster is −1.0. The motion of
the system in the state with a fixed energy and the max-
imal (for this energy) angular momentum Mmax can be
described as the rotation around the center of symmetry
of the equilateral triangle situated in the plane perpendic-
ular to the angular momentum. In this paper the angular
momentum is normalized on the maximum angular mo-
mentum Mmax for a given energy.

We used molecular dynamics to study the phase space
structure of rotating Ar3 cluster as a function of two pa-
rameters, namely the total energy Etot and the total an-
gular momentum [13]. A microcanonical ensemble of ini-
tial conditions was formed by straightforward sampling
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Fig. 1. Motion of the particles in the first two modes for the
regular motion of nonrotating Ar3 cluster, E = −1.5; (a) linear
configuration, (b) triangular configuration.

from points distributed randomly and uniformly in co-
ordinate space such that the potential energy U ≤ Etot

and in momentum space such that the kinetic energy
Ekin = Etot − U . Further, the points were selected from
the angular momentum shell of finite thickness ∆M =
0.001. The Hamilton equations of motion were numeri-
cally integrated using the velocity version of the Verlet
algorithm [14] with a time step ts = 10−2 on the time in-
terval τ = 2.5×103 time units. Using values of m(40Ar) =
39.945 amu, U0 = 99.55 cm−1, and α = 3.757/2

1
6 Å,

the time unit is (mαU0)
1
2 = 1.94 ps, the time step is

ts = 19.4 fs, and the time interval is τ = 4.85 ns. The
absolute drift in numerical values of Etot and M on the
interval τ did not exceed 10−5 and 10−7, respectively.

For a given value of Etot and M = |M| a set of 100 tra-
jectories was used. For the determination of the type of the
motion the maximum Lyapunov exponent σ has been cal-
culated using the scheme of Benettin et al. [16]. For each
trajectory the effective modes were extracted (Sect. 2.1),
rotational and vibrational kinetic energies in every mode
(Sect. 2.2) were calculated, and the numbers of rotational
and vibrational modes were computed (Sect. 2.3).

One can see (Fig. 1) that for the regular motion of non-
rotating cluster the effective modes are similar to the nor-
mal modes. Arrows show directions of the momentum of
each atom in the cluster. The length of each arrow is pro-
portional to the time-averaged magnitude of the atom’s
momentum in the corresponding mode. Atoms are pic-
tured as circles at the points, which corresponds to the
time-averaged positions of the atoms over the time inter-
val from 0 to T . For the regular motion in linear configura-
tion (Fig. 1a), two first obtained modes coincided with the
normal modes of motion for the linear triatomic molecule
with the harmonic potential of interactions. And for the
motion in the triangular structure (Fig. 1b), only the first
mode is similar to the normal mode for the described ear-
lier triatomic molecule.

The dependence of the number of rotational modes
on the normalized angular momentum is shown in Fig-
ure 2. When M belongs to the range from 0.2 to 0.7, one
can see the constant value (approximately 4) of the num-
ber of rotational modes for the chaotic motion. It means
that for the chaotic motion two rotations about orthogonal

Fig. 2. Dependence of the numbers of rotational modes on
the total angular momentum, E = −1.5. The solid line and
symbols (•) correspond to the regular motion and the dotted
line and symbols (�) correspond to the chaotic motion.

Fig. 3. Time dependence of the rotational energy, captured
by the first two modes, for the regular motion, E = −1.5,
M = 0.61. The solid line and symbols (•) correspond to the
first mode and the dotted line and symbols (◦) correspond to
the second mode.

axes exist. As for the regular motion, one can see the con-
stant value (approximately 2) of the number of rotational
modes. It means that for the whole regular component
rotation about one axis is much more probable.

Now let us look at the time dependence of the rota-
tional energy in the first two modes (Fig. 3). One can see
that the amounts of the rotational energy captured by the
modes are synchronized in time for the regular component
(also one can see the sinusoidal nature of these plots), in
just the same way as in the case of the solid-body rota-
tion. For the chaotic component the rotational energy is
distributed chaotically between the modes, the same as in
the case of non-rigid rotation.

When M becomes higher than 0.7, the number of rota-
tional modes decreases. It has been shown earlier [15], that
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Fig. 4. Dependence of the numbers of vibrational modes on
the total angular momentum, E = −1.5. The solid line and
symbols (•) correspond to the regular motion and the dotted
line and symbols (�) correspond to the chaotic motion.

at a fixed total energy there is a maximum value of the
normalized M , above which the angular momentum vector
is forced out of the molecular plane. For the total energy
E = −1.5 this happens when the angular momentum be-
comes greater than M = 0.723. This can be interpreted
as reduction of the tumbling (the motion of the angle be-
tween the angular momentum vector and the normal to
the molecular plane), when the angular momentum is be-
ing increased. Therefore it is physically reasonable, that
for the chaotic motion rotation around the axis lying in the
molecular plane becomes much smaller, and for M > 0.8
we have the number of rotational modes near the value
of 2.

In Figure 4 the dependence of the numbers of vibra-
tional modes on the normalized angular momentum is
shown. One can see that when we turn the rotation on,
the number of vibrational modes increases. We call it the
effect of mode activation, and this effect makes question-
able widespread belief that introduction of the rotational
motion regularizes the dynamics [4,15]. When the angu-
lar momentum is still growing, the numbers of vibrational
modes are kept constant for every type of motion (regular
and chaotic), until the value of angular momentum reaches
almost 0.7. Then many factors, such as the reduction in
tumbling, the reduction of the value of vibrational energy
and the increase in rigidity, make the numbers of vibra-
tional modes lower and the measure of inaccuracy higher.
As one can see in Figure 5, there is no significant difference
in the amount of the total kinetic energy, stored in vibra-
tions, for the regular and chaotic motion. This fact is in a
conflict with the widespread point of view that the major
contribution to the chaotic motion comes from the energy
stored in the vibrational modes, and that the amount of
the energy in those modes defines the dynamics [3,4]. But,
according to our results (Fig. 4), for a broad band of val-
ues of the angular momentum there is a significant differ-
ence in the distribution of the vibrational energy among

Fig. 5. Dependence of the normalized vibrational energy on
the angular momentum for regular and chaotic components,
E = −1.5. The solid line and symbols (•) correspond to regular
motion, the dotted line and symbols (�) correspond to the
chaotic motion.

the modes. Actually, we obtained the value in the neigh-
bourhood of 4 for the numbers of vibrational modes for
the regular motion, and the value in the neighbourhood
of 6 with relatively small error for the chaotic motion,
that means almost full equidistribution of vibrational en-
ergy among modes. Summarizing the results, we can say,
that the distribution of the vibrational energy among the
modes defines the type of dynamics of the cluster.

4 Summary

We have shown that the method of the effective modes
of motion helps to analyze the internal dynamics of small
vdW clusters. By using this method a detailed description
of the influence of the rotation on the internal dynamics
was achieved. Suggested method of the separation of the
energy, captured by the modes, into rotational and vibra-
tional components makes possible to describe the channels
of the energy transfer in vdW clusters. Using the numbers
of rotational and vibrational modes, we have found the
peculiarity of regular component, consisted in a restric-
tion on the number of axes for allowed rotation. Besides,
we have demonstrated that the type of dynamics in the
cluster depends mainly on the distribution of the vibra-
tional energy among the modes, but not on the amount of
energy stored in the vibrational motion.
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